Skip to contents

The goal of envModel is to help prepare data and run models (currently only random forest) to predict group membership as a function of environmental variables. Reduce correlated and ‘unimportant’ environmental variables, run quick random forest runs over many clusterings outputting only confusion matrix, then choose an area of clustering space for a ‘good’ model and run random forest, iteratively adding trees until results stabilise between iterations.

Installation

envModel is not on CRAN.

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("dew-landscapes/envModel")

Contents of envModel

The following functions and data sets are provided in envModel.

object class description
envModel::get_conf_metrics() function Calculate diagnostics
envModel::make_env_clust_df() function Add explanatory (environmental) variables to ‘site’ dataframe.
envModel::make_env_corr() function Generate correlation matrix and select variables to remove
envModel::make_rf_diagnostics() function Run random forest, returning only diagnostic values.
envModel::make_rf_diagnostics_old() function Run random forest, usually returning only diagnostic values.
envModel::make_rf_diagnostics_spatialcv() function Run random forest, returning only diagnostic values from spatial cross
envModel::make_rf_good() function Iteratively add trees to random forest until predictions stabilise
envModel::reduce_env() function Reduce number of environmental variables